Worth Sharing

WS

Stories That Matter

NASA's Rover Makes Oxygen on Mars for the First Time

NASA's Rover Makes Oxygen on Mars for the First Time
NASA's Perseverance Rover made oxygen from the thin air on Mars for the first time—a historic moment.

The growing list of "firsts" for Perseverance, NASA's newest six-wheeled robot on the Martian surface, now includes converting some of the Red Planet's thin, carbon dioxide-rich atmosphere into oxygen.

A toaster-size, experimental instrument aboard Perseverance called the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) accomplished the task on Tuesday.

While the technology demonstration is just getting started, it could pave the way for science fiction to become science fact—isolating and storing oxygen on Mars to help power rockets that could lift astronauts off the planet's surface.  Such devices also might one day provide breathable air for astronauts themselves.

"This is a critical first step at converting carbon dioxide to oxygen on Mars," said NASA's Jim Reuter in a statement. "MOXIE has more work to do, but the results from this technology demonstration are full of promise as we move toward our goal of one day seeing humans on Mars. Oxygen isn't just the stuff we breathe. Rocket propellant depends on oxygen, and future explorers will depend on producing propellant on Mars to make the trip home."

To burn its fuel, a rocket must have more oxygen by weight. Getting four astronauts off the Martian surface on a future mission would require approximately 15,000 pounds (7 metric tons) of rocket fuel and 55,000 pounds (25 metric tons) of oxygen.

In contrast, astronauts living and working on Mars would require far less oxygen to breathe. "The astronauts who spend a year on the surface will maybe use one metric ton between them," Hecht said.

Hauling 25 metric tons of oxygen from Earth to Mars would be an arduous task. Transporting a one-ton oxygen converter—a larger, more powerful descendant of MOXIE that could produce those 25 tons—would be far more economical and practical.

Mars' atmosphere is 96% carbon dioxide. MOXIE works by separating oxygen atoms from carbon dioxide molecules, which are made up of one carbon atom and two oxygen atoms. A waste product, carbon monoxide, is emitted into the Martian atmosphere.

The conversion process requires high levels of heat to reach a temperature of approximately 1,470 degrees Fahrenheit (800 Celsius). To accommodate this, the MOXIE unit is made with heat-tolerant materials. These include 3D-printed nickel alloy parts, which heat and cool the gases flowing through it, and a lightweight aerogel that helps hold in the heat. A thin gold coating on the outside of MOXIE reflects infrared heat, keeping it from radiating outward and potentially damaging other parts of Perseverance.

In this first operation, MOXIE's oxygen production was quite modest—about 5 grams, equivalent to about 10 minutes worth of breathable oxygen for an astronaut. MOXIE is designed to generate up to 10 grams of oxygen per hour.

This technology demonstration was designed to ensure the instrument survived the launch from Earth, a nearly seven-month journey through deep space. MOXIE is expected to extract oxygen at least nine more times over the course of a Martian year (nearly two years on Earth).

"MOXIE isn't just the first instrument to produce oxygen on another world," said Trudy Kortes of NASA. It's the first technology of its kind that will help future missions "live off the land," using elements of another world's environment, also known as in-situ resource utilization.

"It's taking regolith, the substance you find on the ground, and putting it through a processing plant, making it into a large structure, or taking carbon dioxide—the bulk of the atmosphere—and converting it into oxygen," she said. "This process allows us to convert these abundant materials into useable things: propellant, breathable air, or, combined with hydrogen, water."

SHARE This Far-Out News From NASA on Social Media…

About author

Be the first to comment

Leave a Comment